Human Health Risks of Pathogens in Biosolids

Webinar, December 4 2014

Brian D. Badgley
Crop & Soil Environmental Sciences
Virginia Tech
badgley@vt.edu

Outline

- How do we monitor for pathogens in wastewater, biosolids, and the environment?
- How are biosolids treated to reduce pathogen loads?
- What is known about pathogen exposure risks related to land application of biosolids?

The Pathogen(s) Problem...

CLASS	EXAMPLES	DISEASE
Bacteria	Shigella sp.	Bacillary dysentery
	Salmonella sp.	Salmonellosis (gastroenteritis)
	Salmonella typhi	Typhoid fever
	Vibrio cholerae	Cholera
	Enteropathogenic-	
	Escherichia coli	A variety of gastroenteric diseases
	Yersinia sp.	Yersiniosos (gastroenteritis)
	Campylobacter jejuni	Campylobacteriosis (gastroenteritis)
Viruses	Hepatitis A	Infectious hepatitis
	Norwalk virus	Acute gastroenteritis
	Rotaviruses	Acute gastroenteritis
	Polioviruses	Poliomyelitis
	Coxsackie viruses	"flu-like" symptoms
	Echoviruses	"flu-like" symptoms
Protozoa	Entamoeba histolytica	Amebiasis (amoebic dysentery)
	Giardia lamblia	Giardiasis (gastroenteritis)
	Cryptosporidium sp.	Crytosporidiosis (gastroenteritis)
	Balantidium coli	Balantidiasis (gastroenteritis)
Helminths	Ascaris sp.	Ascariasis (roundworm infection)
	Taenia sp.	Taeniasis (tapeworm infection)
	Necator americanus	Ancylostomiasis (hookworm infection)
	Trichuris trichuria	Trichuriasis (whipworm infection)

Source: Smith, 2013. Historical review of US guidance and regulations for sludge disinfection and stabilization including a future projection. 27th Annual Residuals and Biosolids Conference.

Indicator Organisms

- Nonpathogenic
 - Coliforms/E. coli
 - Enterococci

- Pathogenic
 - Salmonella
 - Phages, enteric viruses
 - Giardia, Cryptosporidium, helminths

Two pathogen reduction goals

- 1. Pathogen load
- 2. Vector Attraction

Federal rules

- 40 CFR 257 (1979):
 - Processes to Significantly Reduce Pathogens (PSRPs):
 1 log reduction of pathogens
 - Processes to Further Reduce Pathogens (PFRPs):
 Complete reduction below analytical limits
- 40 CFR 503 (1993)
 - Vector Attraction Reduction (VAR) processes were separated
 - Division into Class A and Class B biosolids
 - Acceptable levels of pathogens and indicators were established

Methods for Pathogen Reduction

- Thermal
 - Composting
 - Pasteurization
- Drying
- Alkalinity
- Irradiation
- Unknown
- Innovative

40CFR503 Pathogen targets

- Class A:
 - Fecal Coliforms: < 10³ CFU/g dw
 - Enteric Viruses: < 1 PFU/4 g dw
 - Salmonella spp.: < 3 MPN/4 g dw
 - Helmith ova: < 1 viable ova/4 g dw
- Class B:
 - Fecal Coliforms: < 2 x 10⁶ CFU/g dw

Class B Use

- A variety of pathogens can persist
- Health risks are the result of complex interactions between factors
 - Pathogen concentration
 - Pathogen ecology
 - Geography/climate
 - Infectious dose
 - End use

Class B contents The following organism

The following organisms are examples of pathogens found in Class B sewage sludge and associated symptoms of exposure. One or more species from the following groups of genera may be represented in Class B sludge.

Bacteria		Symptoms	
Aeromonas Bacillus Brucella Gampylobacter Citrobacter Clostridium Costridium Costridium Enterobacter Erysipelothrix Escherichia Francisella Klebsiella	Legionella Listeria Mycobacterium Proteus Pseudomonas Salmonella Shigella Serratia Staphylococcus Yersinia Vibrio	Fever, chills, nausea, vomiting, severe abdominal pain, diarrhea, bloody stools, respiratory and sinus congestion, thick/colored mucus, rashes	
Astroviruses Caliciviruses Hepatitis viruses Enteroviruses	Norwalk viruses Reoviruses Rotaviruses	Fever, chills, nausea, vomiting, abdominal pain, diarrhea, severe headaches, congestion, respiratory distress, jaundice, paralysis, rashes	
Protozoa Balantidium Cryptosporidium Entamoeba Helminth Worn	Giardia Toxoplasma ms	Intermittent diarrhea/constipa- tion, abdominal pain/cramps, bloody stools, nausea, weight loss, dehydration	
Ascaris Hymenolepis Necator	Taenia Trichuris Toxocara	Fever, chest pain, bronchitis, diar- rhea, vomiting, nutritional deficien- cies, neurological problems, anorexia, weight loss, muscle aches	

So What? Is it safe?

- "There is no documented scientific evidence that the Part 503 rule has failed to protect public health. However, ..."
 - 2002 Report by NAS/NRC
- More recent review: pathogens occur in biosolids but risk is difficult to determine
 - Sidhu and Toze (2009) Environment International 35:187-201

More Recent Research

- Pathogens generally low, except adenoviruses, but indicators generally high (1 log above limit) in nationwide survey of class B solids
 - Pepper et al. (2010) J Environ Qual 39:2185-2190
- No regulated pathogens detected in soil 10 months after application
 - Zerzghi et al. (2010) J Environ Qual 39:402-408

Exposure and risks: epidemiology

- Controlled epidemiological studies are the gold standard but little progress has been made in this area
- Two studies have conflicting results:
 - No difference found in one study although land application rates were below normal (Dorn et al. 1985. Environ Res 38:332-359)
 - A significant difference was found in another study that relied on self-reporting, which has many biases (Khuder et al. 2007. Arch Environ Occup Health 62:5-11)

Reducing risk

 Improving sludge treatment processes is predicted to provide the greatest risk reductions by far

Source: Viau et al., 2011. Environ Sci Tech 45:5459-5469

Conclusions

- Monitoring for pathogens in sewage and the environment is a rapidly changing field
- Most current data suggests risks are low for most pathogenexposure combinations except potentially inhalation of adeno- and norovirus
- Biosolid processing appears to be the most important factor in determining pathogen load and risk
- Need for more and consistent data on pathogens for proper risk assessment as use increases